Search results for "interfaces and thin films"

showing 4 items of 4 documents

Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy

2018

Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Eve…

SciencePhysicsHigh Energy Physics::PhenomenologyQSpintronicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectArticleSurfacesinterfaces and thin filmsFerromagnetismlcsh:QCondensed Matter::Strongly Correlated Electronsddc:530lcsh:Science
researchProduct

The electronic properties of SrTiO3-δ with oxygen vacancies or substitutions

2021

The authors would like to thank R. Dittmann for useful discussions, T. Kocourek, O. Pacherova, S. Cichon, V. Vetokhina, and P. Babor for their contributions to sample preparation and characterization. The authors (M.T., A.D.) acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme “Research, Development and Education” (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760). This study was partly supported by FLAG-ERA JTC project To2Dox (L.R. and E.K.). Calculations have been performed on the LASC Cluster in the Institute of Solid State Phy…

Ferroelectrics and multiferroicsMaterials scienceElectronic properties and materialsBand gapScienceOxide02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundSurfaces interfaces and thin filmsThin filmPerovskite (structure)MultidisciplinaryCondensed matter physicsbusiness.industry4. EducationQR021001 nanoscience & nanotechnology0104 chemical sciencesSemiconductorchemistryStrontium titanate:NATURAL SCIENCES [Research Subject Categories]MedicineCrystallite0210 nano-technologybusinessScientific Reports
researchProduct

Current-induced domain wall motion in nanoscale ferromagnetic elements

2011

The manipulation of a magnetic domain wall (DW) by a spin polarized current in ferromagnetic nanowires has attracted tremendous interest during the last years due to fundamental questions in the fields of spin dependent transport phenomena and magnetization dynamics but also due to promising applications, such as DW based magnetic memory concepts and logic devices. We comprehensively review recent developments in the field of geometrically confined domain walls and in particular current induced DW dynamics. We focus on the influence of the magnetic and electronic transport properties of the materials on the spin transfer effect in DWs. After considering the different DW structures in ferrom…

Ring StructuresAcoustics and Ultrasonics02 engineering and technology01 natural sciencesThreshold Current010305 fluids & plasmasGeneral Materials SciencePermalloy NanowiresAnisotropyComputer Science::DatabasesSpin-½electrical [Condensed matter]PhysicsSpin polarizationCondensed matter physicsGiant Magnetoresistance021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDynamicsDomain wall (magnetism)magnetic and optical SurfacesMechanics of MaterialsCharge carrierThin0210 nano-technologyCurrent PulsesAngular momentumCurrent-induced domain wall motionMagnetic domain530 PhysicsNanowirePerpendicular Magnetic-AnisotropyGiant magnetoresistanceMagnetizationMemory0103 physical sciencesddc:530010306 general physicsMagnetization dynamicsNanowiresX-RaysMechanical EngineeringPhase-DiagramSpin engineering530 PhysikDomain Wallinterfaces and thin filmsFerromagnetismTorqueShift RegisterIon IrradiationNanoscale science and low-D systemsSpin-Polarized CurrentSpin Torque
researchProduct

Oblique surface waves at an interface between a metal–dielectric superlattice and an isotropic dielectric

2012

We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thick…

PlasmonsMaterials scienceSuperlatticesSuperlatticePhysics::OpticsDielectricelectrical magnetic and optical [Condensed matter]01 natural sciences010309 opticsCrystalCondensed Matter::Materials ScienceSurfaces interfaces and thin films0103 physical sciencesPerpendicular010306 general physicsDispersion (water waves)Mathematical PhysicsPlasmonÓpticaCondensed matter physicsIsotropySurface wavesCondensed Matter PhysicsAtomic and Molecular Physics and OpticsPhotonicsSurface waveNanoscale science and low-D systems
researchProduct